Overcoming hypoxia-induced apoptotic resistance through combinatorial inhibition of GSK-3β and CDK1.

نویسندگان

  • Patrick A Mayes
  • Nathan G Dolloff
  • Colin J Daniel
  • J Judy Liu
  • Lori S Hart
  • Kageaki Kuribayashi
  • Joshua E Allen
  • David I H Jee
  • Jay F Dorsey
  • Yingqiu Y Liu
  • David T Dicker
  • J Martin Brown
  • Emma E Furth
  • Peter S Klein
  • Rosalie C Sears
  • Wafik S El-Deiry
چکیده

Tumor hypoxia is an inherent impediment to cancer treatment that is both clinically significant and problematic. In this study, we conducted a cell-based screen to identify small molecules that could reverse the apoptotic resistance of hypoxic cancer cells. Among the compounds, we identified were a structurally related group that sensitized hypoxic cancer cells to apoptosis by inhibiting the kinases GSK-3β and cyclin-dependent kinase (CDK) 1. Combinatorial inhibition of these proteins in hypoxic cancer cells and tumors increased levels of c-Myc and decreased expression of c-IAP2 and the central hypoxia response regulator hypoxia-inducible factor (HIF) 1α. In mice, these compounds augmented the hypoxic tumor cell death induced by cytotoxic chemotherapy, blocking angiogenesis and tumor growth. Taken together, our findings suggest that combinatorial inhibition of GSK-3β and CDK1 augment the apoptotic sensitivity of hypoxic tumors, and they offer preclinical validation of a novel and readily translatable strategy to improve cancer therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overcoming Hypoxia-Induced Apoptotic Resistance through Combinatorial Inhibition of GSK-3b and CDK1

Tumor hypoxia is an inherent impediment to cancer treatment that is both clinically significant and problematic. In this study, we conducted a cell-based screen to identify small molecules that could reverse the apoptotic resistance of hypoxic cancer cells. Among the compounds, we identified were a structurally related group that sensitized hypoxic cancer cells to apoptosis by inhibiting the ki...

متن کامل

The Potential Role of Glycogen Synthase Kinase-3β in Neuropathy-Induced Apoptosis in Spinal Cord

Introduction: Glycogen Synthase Kinase-3β (GSK-3β) participates in several signaling pathways and plays a crucial role in neurodegenerative diseases, inflammation, and neuropathic pain. The ratio of phosphorylated GSK-3β over total GSK-3β (p-GSK-3β/t-GSK-3β) is reduced following nerve injury. Apoptosis is a hallmark of many neuronal dysfunctions in the context of neuropathic pain. Thus, this st...

متن کامل

Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells

Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...

متن کامل

The neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat

Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...

متن کامل

The neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat

Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 71 15  شماره 

صفحات  -

تاریخ انتشار 2011